COMBUSTION WEBINAR

Flame-made gas sensing devices of high selectivity

Speaker: Sotiris E. Pratsinis, ETH Zurich, Switzerland

Time: May 15th 2021
10 am EST; 16:00 Paris; 22:00 Beijing.

Zoom Meeting ID: 959 5515 8623
Passcode: combustion
Check https://sun.ae.gatech.edu/combustion-webinar
for details or directly contact wenting.sun@aerospace.gatech.edu
Abstract: Smartphones offer physical (voice, location and touch) recognition but not any molecular (chemical) recognition. Can combustion aerosol processes help here? Their steep temperature gradients and high particle concentrations during sensing particle formation give access to metastable compositions and fractal-like porous but rigid film structures, both unattained by conventional wet & dry processes. These characteristics have led already to sensors of high sensitivity, selectivity and stability along with short response / recovery times. Broad applications of chemical sensors, however, are hindered mostly by selectivity. This can be enhanced drastically by assembling sensing devices and capitalizing on pre-treatment of gas mixtures. So by placing a flame-made Pd-doped SnO₂ sensor downstream of a polymeric adsorbent bed enables selective detection of methanol at high ethanol concentrations in both liquor and human breath for prevention of methanol poisoning, a plague in the developing world. Second, the selectivity of breath acetone is enhanced by continuous catalytic destruction of interferants on flame-made catalysts before passing through flame-made Si-doped WO₃ sensors to monitor lipolysis (body fat burning). Such advances enable mobile health monitoring, on-site food safety assessment and air quality tracking (i.e. formaldehyde). A pdf of the talk is available from pratsinis@ethz.ch.

Biography: Professor Sotiris E. Pratsinis is a Fellow of the Combustion Institute teaching Mass Transfer and Micro-Nano-Particle Technology at ETH Zurich where he advises four PhDs and four post-docs. He has graduated 44 PhDs, now at leading positions in industry and academia worldwide. With them he has published 400+ refereed articles & has 20+ patents that are licensed to industry & have contributed to creation of four spinoffs from which one joined the LSE on December 2020. His research on multiscale particle dynamics pioneered flame aerosol synthesis of several sophisticated nanostructured materials with closely controlled characteristics at kg/h, even at academic laboratories. This contributed to identifying the origins of nanosilver toxicity, led to novel heterogeneous catalysts and, for the first time, to flame-made gas sensors, nutritional supplements, dental and theranostic materials.
Combustion Webinar Organization Committees

Advisory Committee
Yiguang Ju (Princeton University)
Fei Qi (Shanghai Jiao Tong University)
Philippe Dagaut (CNRS-INSIS)
Gautam Kalghatgi (Univ of Oxford/Saudi Aramco)
Med Colket (RTRC, Retired)

Chung K. (Ed) Law (Princeton University)
Katharina Kohse-Höinghaus (University of Bielefeld)
Kaoru Maruta (Tohoku University)
Kelly Senecal (Convergent Science)
Toshiro Fujimori (IHI Inc.)

Technical Committee
Wenting Sun (Georgia Tech) Co-Chair
Lorenz R Boeck (FM global)
Liming Cai (Tongji University)
Zheng Chen (Peking University)
Matthew Cleary (The University of Sydney)
Stephen Dooley (Trinity College Dublin)
Tiegang Fang (North Carolina State University)
Aamir Farooq (KAUST)
Michael Gollner (UC Berkeley)
Wang Han (The University of Edinburgh)
Jean-Pierre Hickey (U. Waterloo)
Xinyan Huang (Hong Kong Polytech Univ.)
Tai Jin (Zhejiang University)
Tina Kasper (University Duisburg-Essen)

Isaac Boxx (DLR) Co-Chair
Deanna Lacoste (KAUST)
Davide Laera (CERFACS)
Joseph Lefkowitz (Technion)
Qili Liu (Purdue University)
Yushuai Liu (IET, CAS)
Zhandong Wang (USTC)
Nicolas Noiray (ETH Zurich)
Guillermo Rein (Imperial College London)
Xingjian Wang (Florida Institute of Technology)
Jun Xia (Brunel University London)
Huahua Xiao (USTC)
Dong Yang (SUST)
Suo Yang (University of Minnesota)
Peng Zhao (University of Tennessee, Knoxville)
Disclaimer

• The presentation materials and comments made by the lecturer and participants are only for research and education purposes.
• All presentation materials are the sole properties of the lecturer and the Combustion Webinar organizer, and cannot be published and disseminated without written approvals from both parties.
• This lecture may be recorded and released to public.

• Please use Chat or Raise Hand to ask your questions.
• Please turn off microphone. Webinar will be locked after 30 minutes.
• Recorded lectures are on Combustion Webinar YouTube Channel
 https://www.youtube.com/channel/UCSsO7e9VIn__RejSiAPF0JA